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Analysis of 3D Shape and Strain Distributions of a Deformable
Object Using Stereo Vision

I. H. Yang*
(Received December 1, 1992)

This paper proposes a method for analyzing three-dimensional shape and strain distributions
of a deformable object using stereo vision. The three-dimensional coordinates of the surface
points of an object have been calculated using stereoscopic method. The Fourier transform grid
method is applied to high-precision 3D shape and strain distribution of deformable objects by
analyzing the phase distribution of grating images. In the conventional automated grid method,
because the position of a grid point is expressed by an integer number of pixels, it is difficult
to obtain accurate measurement. Using two-dimensional Fourier transform grid method and a
two-dimensional cross grating on the surface of the object, we can easily and accrately find the
correspondence using phase information and seperate each directional grating line from the
two-dimensional grating. Applications for analyzing shape and strain distributions of deforma­
ble objects are shown.

Key Words: Image Processing, Stereo Vision, Shape Measurement, Strain Analysis, Fourier
Transform Grid Method.

1. Introduction

The analysis of shape and strain distribution is
very important for optimum design. It is espe­
cially difficult to measure them of a deformable
object or a vibrating object using contact met­
hods, because it is labor intensive, time­
consuming and expensive in data collection and
analysis. Some grating methods using image
processing have been proposed to measure shape
or strain of objects. Sciammarella and Stur­
geon(l967) have developed a method for analyz­
ing thl~ phases of mismatched fringes by using
one-dimensional Fourier transform. Takeda and
Mutoh(l984) presented Fourier transform
profilometry for measuring the shape of an object.
This method analyzed the shape using phase
information of a projected grating on the surface
of the object. Although it can measure the shape.
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it cannot measure the strain distributions on the
surface of the object. Morimoto et al.(l988,

1990) have developed a new method to analyze
strain distribution by using one harmonic of the
Fourier spectra of the image of a deformed grat­
ing. Moreover, we have previously proposed the
Fourier transform grid method to measure the
three-dimensional shape and strain distributions
of vibrating objects by analyzing the two­
dimensional grating images recorded with two
cameras. In order to measure the shape and strain
distributions of a deformable object, some marks
should be put on the surface of the object. The
automated Fourier transform grid method is
extended to measure them of a deformable object
by combining with a stereo vision.

The stereo vision requires to find the points on
the images corresponding to the points on the
surface of the object. The coordinates of each
point on the surface of the object are measured
using the corresponding images. Chao et al.
(1989) found that camera calibration can affect
the strain accuracy of stereo digital correlation

method. A grid, or any scene for that matter,
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experiences a series of transformations before it is
finally stored in the computer's memory as a

digital image. The most common types transfor­

mations include coordinate translation and rota­
tion, lens distortion, perspective transformation,
and CCD image stretching. A general pinhole

camera calibration which includes all of the
above transformations will be developed, and the
relevance of each transformation assessed. In

order to obtain accurate results, it is important to
measure the parameters of the system such as

camera positions and directions.
In order to determine the parameters of the

system accurately and easily, a method has been

proposed using standard gratings drawn on flat
plates and the Fourier transform grid method,
and a vibrating object has been analyzed by Yang

et al( 1992). The accuracy is no good, and it takes
much time to adjust and measure the camera
positions.

Therefore, we analyze the three-dimensional
shape and the strain distributions of a deformable

objcet by using this Fourier transform grid
method. The Fourier transform grid method can

be automated by taking advantage of solid state
video technology and pattern recognition algor­
ithms. The potential advantages of automated
Fourier transform grid method over conventional

grid method are increased speed and accuracy.
The primary advantages of automated Fourier
transform grid method enjoy over the techniques

which are traditionally recognized as more accu­
rate is that specialized training is not needed to
interpret the grid method results, and that no

additional effort is required for analysis of the
three-dimensional shape and the strain distribu­
tions. A two-dimensional cross grating recorded
by cameras is easily separated into each direc­
tional grating and the brightness phases in each
direction are calculated using Fourier transform
grid method. Using the phase information, the

correspondence between the surface point of an
object and the points on the images can be perfor­
med easily and fast. We show the details of the
analysis procedures in this paper and measure the
three-dimensional shape and the strain distribu­

tions when the pressure of tire increases.

2. Principles of Measurement

2.1 Calculation of 3D coordinates by stereo
vision

The stereo vision is a method to measure the

three-dimensional coordinates on the surface of
an object from the geometric relationship between
two cameras and two images of the object record­

ed from different directions with two CCD camer­
as. Figure 1 shows the geometrical relation

between the two cameras and the object. As all of

the lines from points on the object to the image
plane pass through the center point of the camera
lens, the coordinates of a point on the image
plane determine one of such lines in the three­
dimensional space. The point P is on the object

and the points L I and L2 are the centers of the
lenses of the cameras respectively. II and 12 are the
lines connecting from the point P to the points L I

and L2 respectively.

Now the point P projects to the points Sl and S2
on the image planes 1 and 2 respectively. The

line connecting between the points Sl and L I and
the line connecting between the points S2 and L2
are determined as U; = s;L; and Ih= S2L; respec­
tively. The three-dimensional coordinates of the

points SI and S2 are calculated from the two­
dimensional coordinates on the image planes
using the parameters of the cameras. The position

vectors of points LI and L2 are determined as a7
= u;I::7 and a; = 02L; respectively. As both

y

Fig. 1 Principle of the stereo vision measurement
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2.2 Calculation of surface strain distribu­
tion

Surface strains are calculated from the three­
dimensional coordinates of the grating points on

the 'urfiwe of the object before and after deforma­
tion. Figure 2 shows the schemes of the surface of
a object before and after deformation. The three­
dimensional coordinates of the points C, A and B

on the surface are calculated by the stereo vision.
After deformation, the points C, A and B move to
the points C, A' and B' respectively. x and -y
are the: unit vectors on the plane which is made by
the three points C, A and B and they are perpen­

dicular to the y and x axis respectively. The point

lines II and 12 are the lines from the point P, the

coordinates of the point P can be calculated as the
intersection of the lines II and 12, However in

practice, two lines in the space may not have an
intersection because of the measurement error.

The center point of the common normal segment

of the tow lines is adopted instead of the intersec­

tion. When the points G and H are on SIL; and
S2L; respectively, the position vectors of points G
and H are expressed as follows.

o;G = {J7 + tlU;,
OM=th+t2U; (I)

Where tl and t2 are factors which determine the

ooints G and H.

The points G and H are determined as IGBI
becomes minimum, that is, GH are normal to

both of U; and U;. Then the points G and H can

be expressed as

Gf['U; = {(th+ t2U;) - ({J7 + t1U;)}· U; =0,
GI-j[·U;={(th+t2U;) - ({J7+ltU;)}·U;=O. (2)

The factors tl and t2 are obtained by solving these

simull:aneous equations. o;G and OJ! can be
calculated'using these factors and Eq. (I). As

mentioned previously, the three-dimensional
coordinates of a point on the surface of an object

are obtained as the intersection of two lines
passing through each lens and a pixel point of

each image. The point P which is the middle

point of the points G and H can be calculated
using the following equation.

OF = (o;G +OJI) /2 (3)

(a) Before deformation (b) After deformation

Fig. 2 Schemes of surface of object before and after
deformation

C is the commom start point and the points X and

Yare the end points of x and y respectively.

The vectors a, b, a' and 1:? are defined as

follows.

a=CA,
b=03,
3.7 =C'A l

,

F7=C'B l (4)

As a and b are the linearly independent, the

unit vectors x and y can be expressed with

factors p, q, rand s as follows.

x=Pa+qb,
y=ra+sb (5)

Y! and '1 are determined with these factors p, q,

rand s as follows.

Y!=pa'+ql?,
y' = ra:+slf (6)

When the points X' and Y' are defined as the end
points of Y! and y', these points correspond to

the points X and U respectively before deforma­
tion. The strains of a deformable object are given

as

1Y!I-JxJ
ex x

e _111-lyl
Y- Y ,

7[/2 - -+
r= (~~) {arg(x, y)

arg x, y

-arg(Y!, y')} (7)

Where arg(x, y) means the angle between x
and y. By applying these equations to all the
points oh the whole surface recorded on the
images, strain distributions of a deformable object

are obtained.
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form of g(x, y) is expressed by

3. Theory of Fourier Transform Grid
Method

In the conventional grid method using an
image processing technique, the position of a grid
line is measured by an integer number of pixels.
The Fourier transform grid method is introduced
here for obtaining the position in a decimal unit
and for finding the corresponding points between
different images of the same grating. In order to
analyze a two-dimensional grid image, a cross
grating with orthogonallinls as shown in Fig. 3 is
employed. The brightness intensity function of the
cross grating can be expressed as the product of
two single grating intensity functions. One single
grating normal to the x axis denoted as the x
grating, and another single grating normal to the
y axis denoted as the y grating, are utilized for
strain measurements in the x and y directions
respectively. The expansion of the intensity func­
tion of the cross grating g(x, y) in Fourier series
is

g (x, y) = i: i: im,n (x, y)
m=-oon=-QO

exp{j27rmwxx+ j2nnWyY} (8)

Where im,n is the coefficient of the harmonic of the

order(m, n), m and n are integers, j is the imagi­
nary unit, and Wx and Wy are frequencies of the x
and y gratings respectively. The Fourier trans-

G(Ox' Oy) = l:l:g(X, y)

exp{ - j 27r(Oxx+ !.;?yy) }dxdy

= i: i: Im,n(Ox-mwx, Oy-nWy)
m=-ooll=-CO

(9)

where Im,n(Ox, Oy) is the Fourier transform of im,n

(x, y). Ox and Oy are the x and y directional
frequencies respectively. Figure 4 shows a
schema of the two dimensional Fourier spectrum
of the grating. Each circle shows the region where
the harmonic of the order(m, n) exists. Let us
show the analysis in the x direction. The (1, 0)

order harmonic indicated with oblique lines in
Fig. 4 is extracted by filtering, and its inverse
Fourier transform is computed as the following
equation.

i.,o(x, y) = 1:1).,0(Ox- Wx, Oy)

exp{j27r (Oxx+Oyy) }dOxdOy

= C1,oexp{j8x (x, y)} (10)

The argument of Eq. (10) or the phase of the
grating line contains the displacements. These
grating lines can also be used as the correspond­
ing points before and after deformation. The real
and imaginary parts of Eq. (10) are

Re{il,O(X, y)}=C1,ocos{8x(x, y)},
Im{il,o(x, y)}=C1,osin{8x(x, y)}. (11)

••••••••• Uy

•••••••••
00 00•••••••••

••••••••• 0 00
•••••••••
••••••••• 11,0 Ox

0 00•••••••••
••••••••• 00 00
••••••••• Fig. 4 Schema of Fourier spectrum of 2D grating

Fig. 3 Two-dimensional grating image image
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Each equation shows a sinusoidal fringe pattern.
The image of this equation shows only the x
grating. The phase distribution (J,,(x, y) is
obtained by calculating

ex (x, y) = arctan 1m i.l.O (x, y) (12)
Re Zt.o(x, y)

Similarly, the phase distribution 8y(x, y) of the y
grating is obtained. The position of the point(x,
y) corresponding to a certain phase (ex, 8y) can
be calculated in a decimal pixel unit by a two­
dimensional interpolation based on the continuity
of phase distribution. Since the phases obtained
by Eq. (12) are confined to the range of - 7[ to 7[

the phases are adjusted so as to be continuous by
adding or subtracting 2 7[. Based on the informa­
tion of a reference line, a phase distribution in
each image is calculated. Furthermore, in order to
match the corresponding points between different
images, a reference point is selected in each image
with the same phase value. If two points in the
diffen:nt images have the same phases in both the
x and y directions, they are identified as the
corresponding points and their matching process
can bl~ automatically performed.

4. Experimental Results and
Discussions

The three-dimensional shape and the strain
distributions of the surface of a 'deformable object
are analyzed by the method mentioned above. In
order to measure 3D shape and strain distribution
of a deformable object, the measurement system
showJ1i in Fig. 5 was developed based on the
steteo:;copic method. A two-dimensional grating
pattern with a pitch 2 mm is drawn on the side of
a tire before deformation.

During the experiment, the images of the grat­
ing on the deformable objeCt are simultaneously
recorded with two video cassette recorders. The
recorded video images are changed to the digital
image using an image grabber. Figure 6 shows
the grating image recorded by the left camera
when the pressure is 3.0 kgjcm2 . The pitch
betwefm two grating lines in each image is about
8 pixels. The analyzed region is about 60 mm x 80
mm ne:ar the center. The analysis of the shape and

Fig. 5 Measurement systf:m

Fig. 6 Two-dimensional grating image of left cam­
era

Fig. 7 Fourier spectrum of 2D grating image

the strain distributions is performed when the
pressure is 0.0, 1.0, 2.0 and 3.0 kgjcm2 . Each
image obtained from cameras is t.ransformed to
the Fourier spectrum by calculating the Fourier
transform. The Fourier spectrum of the grating
image is shown in Fig. 7. The cross gratings can
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(a) X -directional phase distribution (b) Y -directional phase distribution

Fig. 8 Phase distribution of x-and y-directional first harmonic

be divided to the one-dimensional grating for

each x and y direction by extracting the first
harmonic of each direction and calculating the

inverse Fourier transform. In general, the overlap­
pings between the first harmonic and other har­

monics depend on the deformation state or strain
distribution. It is evident that the overlapping
phenomenon is initiated by the encounter

between the highest frequency compoment of the
first harmonic and the lowest freq uency compo­

nent of another harmonic of the order. If each of
the first harmonics in the x and y directions is not

overlapped by other harmonics, it can be extract­

ed respectively. However, if the first harmonic

extraction is not complete, some errors occur. The

first harmonic of Fourier spectrum of a grating

image corresponds to the high brightness intensity
component. Because of the phase distribution

corresponding to the brightness distrbution and
the continuity of the phase distribution, the posi­

tion of the grating is calculated by a decimal
number of pixels by interpolating the correspond­
ing distribution. Figure 8 shows the phase distri­
bution obtained by calculating the inverse Four­
ier transform of each first harmonic. Every grat­
ing line in x and y directions has a line number

for each direction.
From the phase of a reference point in each

image, the phase distributions in the x and y

directions can be calculated. These line numbers
increase or decrease monotonically on the surface
of the object. As the phase is in proportion to the

line number, it can be used for corresponding
instead of the line number. Therefore every pixel

on the image has a decimal line number obtained
from the phase information. By analyzing the

phase distribution of the grating, not only the
accurate positions of the grating line can be

obtained, but the matching of the corresponding
grating points in the different images can also be

automatically performed.
The phase is obtained by calculating the ratio

of the brightness of the imaginary part to that of
the real part at each point. From the phase of a

reference point in each image, the phase distribu­
tions in the x and y directions can be calculated.

By analyzing the two-dimensional phase distribu­

tions in both the right and left images, the exact
positions of the intersection in each image are

obtained. The three-dimensional positions of grid
points are determined by Eq. (3) The positions of

the intersection of the grating are stored in a

database. By applying this method to stereoscopic
measurement system, the shape of a deformable

object can be measured. Figure 9 shows the
deformation of the three-dimensional shapes
when the pressure increases. After deformation,

the shape of the deformable object is measured by
the same method, and another three-dimensional

shape database is formed by the same correspond­
ing points. Figure 10 shows the comparison of
the shape obtained by this proposed method and
the shape 'measured by a dial gauge before defor­

mation. The maximum difference is 0.76 mm and
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Fig. 9 Shapes with different pressure

the average of the absolute differences is 0.27 mm.

The error may be due to optical distortions, any
electrical and mechanical changes, the error of
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Fig. 10 Comparison of shape obtained by this
proposed method and shape measured by dial
gauge before deformation

parameter measurement and so on. The argument

of Eq. (10) includes the information of the dis­
placement. By substituting the argument 8x(x, y)
obtained from Eq. (12) into Eq. (10), we can

calculate the displacement of the x grating. Simi­
larly, the displacement of the y grating is

obtained. Therefore, we are able to obtain the
displacement on pixel by pixel because the phase
at each pixel point gives the information of the
displacement at the point. The surface strain
distributions of deformable objects are calculated
by differentiating the displacement obtained from
the continuous arguments. Figure II shows the
surface strain distributions with pressure displace­

ment. The distributions of strain were analyzed
when the pressure is 0.0, 1.0 and 2.0 kgjcm2

respectively. It is noted that the strain near the
center of the deformable object becomes larger
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Fig. 11 Strain distributions with pressure displace­
ment

with the increasing displacement of the pressure.

5. Conclusions

The important features which distinguish the
automated Fourier transform grid method de­
scribed in this paper are simplicity and speed. The
simplicity of the algorithm enables full-field strain
analysis to be accomplished in under 180 seconds
with a personal computer. A two-dimensional
cross grating recorded by two cameras is easily
seperated into each directional grating and the
brightness phases in each direction are calculated
using Fourier transform grid method. By analyz­
ing the phase distribution, the correspondence
between the surface point of an object and the
points on the images can be performed easily and
fast. The coordinates of each point on the surface
of the object are accurately measured using the
corresponding images. The coordinates of all
points, which have arbitary phase vectors of
grating lines, are obtained in a decimal number of
pixels on the image. The three-dimensional shape
and strain distributions of a deformable object

with the increase of pressure using the stereo
vision are measured.
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